A Novel Radial Basis Function Neural Network Classifier with Centers Set By Cooperative Clustering
نویسندگان
چکیده
The selection of centers and widths has a strong influence on the performance of radial basis function neural network classifier. In this paper, a novel approach of clustering based on Fuzzy Cmeans clustering is proposed, which is called cooperative clustering, and use it for selection of centers of radial basis function neural network. Experimental results show that the performance of classification using our approach is better than radial basis function neural network.
منابع مشابه
Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملBank efficiency evaluation using a neural network-DEA method
In the present time, evaluating the performance of banks is one of the important subjects for societies and the bank managers who want to expand the scope of their operation. One of the non-parametric approaches for evaluating efficiency is data envelopment analysis(DEA). By a mathematical programming model, DEA provides an estimation of efficiency surfaces. A major problem faced by DEA is that...
متن کاملTraining Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset
Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملCooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
In a radial basis function (RBF) network, the RBF centers and widths can be evolved by a cooperative-competitive genetic algorithm. The set of genetic strings in one generation of the algorithm represents one REP network, not a population of competing networks. This leads to moderate computation times for the algorithm as a whole. Selection operates on individual RBFs rather than on whole netwo...
متن کامل